OIEVA NETWORKS

Implementing and securing a resilient network services infrastructure

Implementing a resilient network services infrastructure

Kier Prior-Williams

Calleva Networks kpw@callevanetworks.com

- The need for resilience
- DNS resilience
 - Challenges and Solutions
- DHCP resilience
 - Challenges and Solutions
- The benefits of integrated IPAM, DNS, DHCP
- Summary
- Q&A

The need for resilience

- Without core network services (DNS & DHCP)
 - Users can't access the network/internet
 - Email not working
 - Apps not working
- Stuff breaks! Users are on the phone to support (unless it's VoIP!)
- Resilient DNS/DHCP services can eliminate potential network downtime

DNS resilience

Existing DNS environment?

- May have lots of Microsoft DNS...
 - AD integrated
 - DNS running on all your DC's
- It probably works more by accident than by design...
 - There are likely to be inconsistencies
- Patch Tuesday forces a monthly reboot?

Existing DNS environment?

- Hybrid deployment...
 - Both Linux and Microsoft DNS servers
- Keeping BIND updated can be a challenge
 - Security vulnerabilities
 - How do you patch?
- Do you integrate BIND and AD?
 - Or run completely separate environments?

DNS support & resilience

- Can you count on a vendor for support?
- Have you configured any kind of resilience?
 - VIPs or Windows/Linux Cluster
 - RAID 1 to combat HDD failure?
 - Dual PSU?

Are you doing any monitoring and alerting?

DNS deployment considerations

- Internal DNS:
 - Clients configured to talk to 2 or more servers
 - Local survivability needed ? Local DNS service vs Centralised service
- External DNS:
 - Separation of services:
 - Authoritative (offsite secondary, geographic diversity)
 - Recursive (but no open recursive!)

DNS High Availability

- Shared VIP across multiple DNS servers
 - Commonly use Router Redundancy Protocols
- Benefits:
 - Lose one node and another node provides service
 - No downtime during upgrades/maintenance
 - **Considerations:**
 - Must be on same layer 2 network
 - Number of HA pairs

DNS High-availability

- Allows multiple, geographically diverse DNS servers to advertise the same IP address
 - Looks like multiple routes to the same server
- A user's query is routed to their nearest DNS server
- If that server dies, queries get routed to the next nearest instance

- Increased Reliability/Availability. Lose several DNS servers and we've still got service
- Improved performance
- Load balancing
- Resilience against DDoS attacks (localised impact of the attack)
- Simplified Client Configuration
- Internet Root servers use it so it can't be bad

DNS Anycast – considerations

- Consistent data on DNS servers
- Rollout is not a trivial task
- Need a good relationship with the network guy (better still - you are the network guy)
- Troubleshooting

Load balancers (hardware)

- Use a load balancing appliance in front of a DNS server farm
- Load balancer will distribute queries and monitor DNS servers
- Good:
 - Existing infrastructure may support this
 - No DNS outage when a server fails or during maintenance

Load balancers

- Considerations:
 - Additional technology now in the data flow
 - Consistent data on DNS servers
 - May complicate troubleshooting
 - Different teams likely to be involved finger pointing
 - Expense of new kit if there isn't enough capacity in existing load balancer appliances

Other DNS considerations

- Standard DNS security: version updates (DNS binary & OS), ACLs, data flows
- DNSSEC: Data integrity validate the origin and integrity of DNS data
- DNS Firewall (RPZ-based) block access to Malware sites at the DNS level
- DDoS mitigation service

DHCP resilience

Existing DHCP environment?

- Linux and/or Microsoft?
 - Is failover deployed?
 - Failover is not split-scopes!
- Many devices dependent upon DHCP
 - VoIP Phones, wireless clients, desktops etc.
 - Support/management/monitoring
- How do you document IP allocations?

Management headaches

- Microsoft DNS/DHCP use separate MMC consoles
 - And you have to know which server to connect to
 - Limited granular access control
- Linux is primarily command line driven
 - IPAM normally done elsewhere
 - e.g. In a spreadsheet

DHCP – Single server

- Individual server(s) doing DHCP
- Server dies
 - No-one can get a new IP
 - Clients with a lease okay up to expiry time
- How long to restore the configuration?
- Lost some or all of the IP lease information
- Clients may have to change IP address

DHCP split-scope

- Multiple, independent DHCP servers
- Typically known as "80/20 split"
- DHCP servers are independent of each other
- If you lose the 80% server, does the 20% server have the capacity to handle all clients
- A client will have to change its IP address when getting a lease from the "other" server

DHCP failover

- DHCP protocol level redundancy
- Two DHCP servers in a "relationship"
 - Doesn't have to be a monogamous relationship!
- Share a common pool of DHCP addresses
- Synchronise lease information
- Consideration:
 - As an admin, you need to know how the failover behaves if you do lose a DHCP server

DHCP failover benefits

- Benefits:
 - Resiliency if one server is down, the other still provides service
 - No risk of duplicate IP addresses
 - Load-balancing Active/Active
 - Geographically separate locations different subnets

DHCP One-to-one failover

25 © Calleva Networks Ltd. 2013

IPAM / DDI

What is IPAM

- IPAM is a management process that involves documenting IP subnets and addresses
- IPAM benefits:
 - Centralised view of an IP plan
 - Avoid service disruption duplicate IPs
 - Capacity planning for future growth
 - Granular role based delegation
 - Auditing

How does DDI fit in?

- Integrating IPAM with DNS and DHCP
- Enables:
 - Backups and Disaster Recovery process for DNS/DHCP configuration and IPAM data
 - Move away from traditional "server-by-server" management to an architecture-based administration
 - Simplify provisioning of IP/DHCP/DNS
 - Do it once

Introducing a DDI solution

- IP address plan management
- Integrated network services engines: DNS-DHCP-NTP-TFTP
- Multi-vendor DNS & DHCP services management
 - Microsoft ISC Cisco SOLIDServer™
- Active IP address tracking with IPLocator module
- Unified system management
 - Integrated zero admin database
 - Hardened OS with embedded stateful firewall
 - Simplified upgrades, backups and disaster recovery

Multi-vendor/heterogeneous support

SMART Architectures[™]: DNS-**DHCP** Architecture Management

SMART Architectures[™]: **Architecture Management**

Smart Architecture[™] Library

SMART Architectures™: Move to Architecture Management

User defined home pages

Intuitive full function UI

NETWORKS

- Active IP address tracking with IPLocator
 - Identify IP/MAC address connections on the network
 - Identify associated switch and switch port

- The need for resilient network services
- Deploying resilient DNS services
- Deploying resilient DHCP services
- Benefits of an integrated DNS, DHCP, IPAM solution

Thank You

Kier Prior-Williams kpw@callevanetworks.com www.callevanetworks.com @CallevaNetworks